UCLA Algebra Qualifying Exam Solutions

نویسنده

  • Ian Coley
چکیده

Problem 2. Let A be a central division algebra (of finite dimension) over a field k. Let [A, A] be the k-subspace of A spanned by the elements ab − ba with a, b ∈ A. Show that [A, A] = A. Solution. Let K be the algebraic closure of k, and consider B = A ⊗ k K. Then B ∼ = M n (K) for some n ∈ N, and thus we can understand [B, B] ∼ = [A, A] ⊗ k K. In this case, [B, B] contains only matrices of trace 0, since it is clear that tr(XY − Y X) = 0 for every X, Y ∈ B. Therefore [B, B] = B. As such, we could not have had [A, A] = A. Problem 3. Given ϕ : A → B a surjective morphism of rings, show that the image by ϕ of the Jacobson radical of A is contained in the Jacobson radical of B. Solution. We use the following characterisation of the Jacobson radical: J(R) = {x ∈ R : xy − 1 ∈

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UCLA ALGEBRA QUALIFYING EXAM Solutions

Proof. Let L/F be an algebraic extension. Let f : L −→ L be a homomorphism fixing F . Recall that field homomorphisms are always injective, it remains to show that it is surjective. Let a ∈ L. As L/F is algebraic, there exists a1, . . . , ad ∈ F such that a satisfy p(x) = x + a1xd−1 + . . .+ ad. Let S = {s ∈ L : p(s) = 0}. As f is a homomorphism fixing the coefficients of the polynomial p(x), i...

متن کامل

Notes on Numerical Analysis

This set of notes covers topics that most commonly show up on the Numerical Analysis qualifying exam in the Mathematics department at UCLA. Each section covers a specific area of numerical analysis. At the end of each section, we provide a list of key theorems. If the proof of the theorem is directly relevant to the qualifying exam, it will be included in this document. Otherwise, we simply inc...

متن کامل

Review Notes for the Basic Qualifying Exam

Purpose: This document is a compilation of notes generated to prepare for the Basic Qualifying Exam. I have documented some of my solutions so that I may not forget and repeat the frustrations of failing this cursed exam again. Best of luck to anyone using these notes to prepare. Also see Brent Woodhouse's study guide. I do not guarantee accuracy of all the presented solutions. This document is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014